

C21.2022 - Prediction and Prevention of Bridge Performance Degradation due to Corrosion, Material Loss, and Microstructural Changes B.K. Teja Mekala, Advisor: Lesley D Frame, Materials Science and Engineering, University of Connecticut

- To perform a comparative study on general corrosion properties of low alloy steels A7, A36 and A588 and to produce a model predicting the corrosion performance of a bridge. ✤ Bridges in US share ~37% of the total annual cost of corrosion [4].
- More than 50% of the bridges in Connecticut were estimated to be in fair or poor in condition by the Department of Transportation [4].

Background

- ✤ A7 steel was used for bridge construction till 1960s. One major limitation of A7 is that it is corrosive and mechanically not robust [1,4].
- ✤ A7 was replaced by A36 in 1967 due to its better mechanical properties [2,4]. ✤ A588 is developed very recently with better corrosive properties.

Table: Compositions of A7 A36 and A588 [1-3]

Steel	С	Mn	Si	Cr	Cu	Мо	Ni	Ρ	S	V
A7	-	-	-	-	0.18 Min	-	-	0.075 Max	0.063 Max	_
A36	0.26 Max	-	0.4 Max	-	0.2 Max	-	-	0.04 Max	0.05 Max	_
A588	0.2 Max	0.5 - 1.35	0.15 - 0.65	0.4 - 0.7	0.2 - 0.5	0.1 Max	0.5 Max	0.03 Max	0.03 Max	0.01-0.1

- Bridges in marine environments will undergo corrosion due to humidity, chlorides, sulfides, temperature etc.
- De-icing salt, and the salt present in the air will enhance the corrosion by providing the Chloride ion.

Wet-dry cycle testing

Fig. Wet-Dry cycle test setup

Parameters	Levels/Condition
Total wet-dry cycles	400 (each cycle - 15 min wetting
Surface conditions (2)	Oxidized(As-received) and
Salt concentrations (4)	1, 2, 3.5, 5 wt.%
Batches of samples collected (10)	25, 50, 75, 100, 150, 200, 250, 30
Each sample dimensions	50 mm×25 mm×4.76

Photographing the samples

✤ All the samples were photographed on both sides using Nikon- 5000 DSLR camera for the surface comparison.

UCONN TECH PARK

X-Ray Diffraction (XRD)

and 1 hour drying) d Polished 0, 350, 400 cycles 6 mm

Transportation Infrastructure Durability Center AT THE UNIVERSITY OF MAINE

August 2023 – www.tidc-utc.org