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Bridge Inspection Procedure, Where we are now?

* Data Collection: Manually or UAV-Based data (image, video ,..

* Data Processing: Systematic transformation of acquired raw data into
structured, analyzed, and meaningful information. Tasks such as data
integration, cleaning, defect detection, feature extraction, visualization, and

trend analysis.

* Decision Making: Information derived from the processed data support
informed decision-making for bridge maintenance, repair, and overall

structural management.

»Whole bridge inspection process ranging from data collection and
analysis to decision-making, still require substantial human intervention
which is costly, time consuming, inefficient and subjective.
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) The classification branch uses Binary Cross-Entropy (BCE) Loss.
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Contribution

* Automating data processing: using deep learning
algorithms to clean, classify images and detect defects

* Development of open-source semantic segmentation
annotated corrosion dataset available at:
(https://digitalcommons.library.umaine.edu)

* Quantifying defects: Pixel-wise corrosion
classification and condition rating according to
AASHTO and BIRM

* Providing valuable information for bridge inspectors
for maintenance or replacement decision making

7 * The regression branch employs both Distribution Focal Loss (DFL) and CloU Loss.
- * The 3 Losses are weighted by a specific weight ratio.

Deep Learning-Based Condition Rating Algorlthm
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Results Analysis

Trained Model Dataset F1 Score Precision Recall Accuracy mAPS0
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Data Collection and Annotation

* More than 1200 high quality images containing various types

of defects are gathered from bridges using a drone and a Nikon
camera

* Labelme and Roboflow annotation tools are used to perform
bounding box and pixel-wise annotations

Corrosion condition rating Annotation

@® Background, no annotation (Good): No
visible corrosion, Peeling Paint, Minimal corrosion

@ Class 1 (Fair): Freckled Rust/Sporadic
Corrosion, Exposed Steel, Surface Corrosion

Class 2 (Poor): Deeper corrosion,
Disintegrated Portions of Steel, Pack Rust

@ Class 3 (Severe): Steel with complete section
loss (holes or cavities, Multiple perforations)

Conclusion

* A dataset of 1200 1images are collected and a defect
detection algorithm was trained to classify the images
into 7 categories of defects.

* A semantic segmentation algorithm 1s trained using
corrosion 1mages to perform corrosion condition rating
task according to the AASHTO and BIRM regulations.

* The dataset 1s available online and offers valuable
support in advancing the segmentation models by
providing high-quality images and corresponding
annotations

* Experimental results and comparison on real datasets
verify the trained Mask RCNN and YOLOvS8 models
performs decently for corrosion segmentation and
condition rating (mAPS50 of 0.67 and 0.73 respectively).
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